Bicomplex extensions of zero mean curvature surfaces in R2,1 and R2,2
نویسندگان
چکیده
منابع مشابه
New Constant Mean Curvature Surfaces
We use the DPW construction [5] to present three new classes of immersed CMC cylinders, each of which includes surfaces with umbilics. The first class consists of cylinders with one end asymptotic to a Delaunay surface. The second class presents surfaces with a closed planar geodesic. In the third class each surface has a closed curve of points with a common tangent plane. An appendix, by the t...
متن کاملRelative parabolicity of zero mean curvature surfaces in R 3 and R 31
If the Lorentzian norm on a maximal surface in the 3-dimensional Lorentz-Minkowski space R 1 is positive and proper, then the surface is relative parabolic. As a consequence, entire maximal graphs with a closed set of isolated singularities are relative parabolic. Furthermore, maximal and minimal graphs over closed starlike domains in R 1 and R, respectively, are relative parabolic.
متن کاملCoplanar Constant Mean Curvature Surfaces
We consider constant mean curvature surfaces with finite topology, properly embedded in three-space in the sense of Alexandrov. Such surfaces with three ends and genus zero were constructed and completely classified by the authors [GKS2, GKS1]. Here we extend the arguments to the case of an arbitrary number of ends, under the assumption that the asymptotic axes of the ends lie in a common plane...
متن کاملGaussian and Mean Curvature of Subdivision Surfaces
By explicitly deriving the curvature of subdivision surfaces in the extraordinary points, we give an alternative, more direct account of the criteria necessary and sufficient for achieving curvature continuity than earlier approaches that locally parametrize the surface by eigenfunctions. The approach allows us to rederive and thus survey the important lower bound results on piecewise polynomia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2019
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2018.12.017